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Abstract
1. Dispersal is a key ecological process that influences plant community assembly. 

Therefore, understanding whether dispersal strategies are associated with climate 
is of utmost importance, particularly in areas greatly exposed to climate change. 
We examined alpine plant communities located in the mountain summits of the 
tropical Andes across a 4,000-km latitudinal gradient. We investigated species 
dispersal strategies and tested their association with climatic conditions and their 
evolutionary history.

2. We used dispersal-related traits (dispersal mode and growth form) to character-
ize dispersal strategies for 486 species recorded on 49 mountain summits. Then 
we analysed the phylogenetic signal of traits and investigated the association 
between dispersal traits, phylogeny, climate and space using structural equation 
modelling and fourth-corner analysis together with RLQ ordination.

3. A median of 36% species in the communities was anemochorous (wind-dispersed) 
and herbaceous. This dispersal strategy was followed by the barochory-herb com-
bination (herbaceous with unspecialized seeds, dispersed by gravity) with a me-
dian of 26.3% species in the communities. The latter strategy was common among 
species with distributions restricted to alpine environments.

4. While trait states were phylogenetically conserved, they were significantly as-
sociated with a temperature gradient. Low minimum air temperatures, found at 
higher latitudes/elevations, were correlated with the prevalence of barochory and 
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1  | INTRODUC TION

Dispersal plays a key role in species local survival (Clobert, Baguette, 
Benton, & Bullock, 2012), plant community assembly (Howe & Westley, 
1996) and gene flow within and between populations (Matthysen, 
2012). Plant dispersal is particularly relevant for alpine species be-
cause their habitats are naturally fragmented (Flantua, O'Dea, Onstein, 
Giraldo, & Hooghiemstra, 2019) and have undergone increased frag-
mentation due to land-use change (Spehn, Liberman, & Körner, 2006; 
Tovar, Duivenvoorden, Sánchez-Vega, & Seijmonsbergen, 2012). Not 
only new habitat configuration but changes in environmental condi-
tions, due to ongoing climate change (Vuille et al., 2018), could make 
dispersal less effective for certain species, thus affecting community 
assembly, particularly at high elevations (Zimmer et al., 2018). However, 
whether plant dispersal strategies are associated with the climate re-
mains understudied in tropical alpine regions, hindering our ability to 
assess how they may be affected by climate change.

Plant dispersal strategies involve different key traits (Bonte 
et al., 2012). One of the key ones is dispersal mode, which depends 
on the diaspore (part of the plant that is dispersed) morphological 
structures. For example, seed wings or pappi favour dispersal by wind 
(anemochory), edible fruits are dispersed by animals that eat them (en-
dozoochory), hooks attach to animals’ fur (epizoochory) and seeds with-
out morphological adaptations rely on dispersal by gravity (barochory; 
van der Pijl, 1982). Animal-dispersed seeds achieve longer dispersal dis-
tances than those dispersed by wind and those without morphological 
adaptations (Tamme et al., 2014). Other traits such as growth form and 
plant height also play a role in determining dispersal distances as dias-
pores of taller species achieve longer dispersal distances than shorter 
ones (Tamme et al., 2014; Thomson et al., 2010). Although other traits 
such as seed mass and seed terminal velocity might play a role on species 

dispersal as well, dispersal mode and growth form enable reasonable 
predictions of dispersal distances to be made (Tamme et al., 2014).

Under the trait-based ecology framework (Enquist et al., 2015), 
traits are expected to reach optimal values (trait states) under a spe-
cific climate condition. However, in many parts of the world, such 
as tropical alpine systems, dispersal trait–environment relationships 
remain little understood. Previous studies suggested that certain 
growth forms are better adapted to lower minimum temperatures 
(Arzac, Llambí, Dulhoste, Olano, & Chacón-Moreno, 2019; Carilla 
et al., 2018; Halloy & Mark, 1996; Hedberg & Hedberg, 1979). 
However, trait–environment studies of dispersal mode in alpine re-
gions show some mixed results. In the Swiss Alps, decreasing tem-
peratures along the elevation gradient correlate with an increased 
proportion of plant species whose seeds have pappus (except at the 
limit of plant growth in nival areas; Pellissier, Fournier, Guisan, & 
Vittoz, 2010). In the northern Andes (11°N–6.5°S), a decrease in the 
importance of epizoochorous species and an increase of anemochor-
ous species along the elevation gradient has been shown (Frantzen 
& Bouman, 1989; Melcher, Bouman, & Cleef, 2000). However, no 
correlation is found between the presence of pappose seeds and el-
evation in the Apennines (Di Musciano et al., 2018) or the Tibetan 
Plateau (Qi et al., 2014) nor between herbaceous species adapted to 
zoochory and elevation. The contrasting patterns could result from 
the differences in elevation and latitudinal ranges included in each 
study. Therefore, a comprehensive regional analysis of traits related 
to dispersal along environmental gradients is needed in alpine re-
gions to elucidate potential associations with climate.

In addition to trait–environment relationships, traits within a given 
community are expected to be influenced by macroevolutionary 
patterns (Gerhold, Cahill, Winter, Bartish, & Prinzing, 2015). Closely 
related species could have inherited similar traits from a common 

the herb growth form, traits that are common among Caryophyllales, Brassicaceae 
and Poaceae. Milder temperatures, found at lower latitudes/elevations, were as-
sociated with endozoochorous, shrub species mostly from the Ericaceae family. 
Anemochorous species were found all along the temperature gradient, possibly 
due to the success of anemochorous Compositae species in alpine regions. We 
also found that trait state dominance was more associated with the climatic condi-
tions of the summit than with community phylogenetic structure. Although the 
evolutionary history of the tropical Andean flora has also shaped dispersal strate-
gies, our results suggest that the environment had a more predominant role.

5. Synthesis. We showed that dispersal-related traits are strongly associated with a 
gradient of minimum air temperatures in the Andes. Global warming may weaken 
this key filter at tropical alpine summits, potentially altering community dispersal 
strategies in this region and thus, plant community structure and composition.

K E Y W O R D S

alpine environments, dispersal traits, environmental filtering, fourth corner, paramo, plant 
community, puna, RLQ analysis



     |  3Journal of EcologyTOVAR eT Al.

ancestor, which is defined as phylogenetic conservatism (Cadotte & 
Davies, 2016). For example, traits related to reproduction such as flow-
ering and fruiting phenology show strong phylogenetic conservatism 
in alpine meadow communities (Li et al., 2016). It is therefore essential 
to explore the effect of phylogenetic relatedness on dispersal-related 
traits observed in alpine communities (de Bello et al., 2015).

The Andes exhibit climatic gradients linked to elevation and lati-
tude that strongly influence the patterns of its alpine plant community 
assemblages (Cuesta et al., 2017). One hypothesis (H1) that may explain 
the composition of dispersal-related traits in these alpine communities 
is that harsher climatic conditions at the coldest summits could filter 
out some dispersal-related traits and favour others. In support for H1, 
growth forms seem to be constrained by climatic conditions in tropical 
alpine regions (Arzac et al., 2019; Hedberg & Hedberg, 1979) and dis-
persal mode and elevation seem to be associated in some temperate 
alpine regions (Pellissier et al., 2010). However, the tropical Andean 
summits studied here were relatively recently colonized in the last 
4–12 Ma, when the largest mountain building of the Andes occurred 
(Hoorn et al., 2010). Therefore, a second hypothesis (H2) is that dis-
persal traits were inherited from ancestors that colonized the newly 
uplifted areas and phylogenies are driving dispersal trait composition 
in high Andean communities. In support for this, it has been suggested 
that taxa with high radiation in the Andes first colonized newly up-
lifted environments without morphological innovations, driven by 
ecological opportunities offered by a new habitat and the absence of 
competition (Hughes & Atchison, 2015; Hughes & Eastwood, 2006).

The aim of this paper is to investigate the association between 
dispersal strategies (by using the dispersal-related traits, that is, 
dispersal mode and growth form), climate and evolutionary history 
(phylogenetic relatedness) in mountain summits of the tropical Andes 
(>3,200 m) across 4,000 km of latitudinal gradient. The main objec-
tives are: (a) to characterize plant dispersal strategies of high Andean 
species and communities, (b) to assess the association of plant disper-
sal strategies with current climatic conditions (H1) and evolutionary 
history (H2). As these are not mutually exclusive hypotheses, here 
we analysed whether H1 or H2 are predominantly associated with 
dispersal traits within communities for our second objective. While 

the association between dispersal traits, climate and phylogenies has 
been partially explored for montane forest systems of the northern 
Andes (Buitrón-Jurado & Ramírez, 2014), to our knowledge, no similar 
study has been conducted in the tropical alpine systems.

2  | MATERIAL S AND METHODS

2.1 | Community data

Plant community data (species composition) were recorded between 
2012 and 2013 on 49 summits between 3,200 and 5,500 m a.s.l., 
using 8 to 16 1-m2 plots per summit (Cuesta et al., 2017) across the 
Tropical Andes (Figure 1). Our study area covers two major tropical 
alpine biomes: (a) the paramo, located in the northern Andes, with 
humid conditions and (b) the puna, located in the Central Andes with 
drier conditions (location of northern and central Andes, and differ-
ences in temperature are shown in Figure 1, further details of our 
study area are included in the Supporting Information: Methods). 
These plots are part of the GLORIA-Andes long-term monitoring net-
work and the measurements follow the standard methods developed 
by the GLORIA global network (Pauli et al., 2015). The warmest sum-
mits are located closer to the equator or in sub-alpine habitats closer 
to the upper forest line (UFL) while the coldest summits are located 
further from the equator or in sub-nival or nival habitats (Figure 1). For 
this study, we used the presence/absence data collected in the plots 
of fully identified seed plants. We summarized subspecies and vari-
eties into parent species’ binomial, because dispersal trait data and 
phylogenetic information were difficult to obtain for lower ranks (see 
next sections). Finally, we obtained plant community data for a total of 
486 species on the 49 summits (Supporting Information: Species list).

2.2 | Trait data

We collected information of two traits associated with plant dis-
persal strategies, namely dispersal mode and growth form. These 

F I G U R E  1   Study area showing the 
49 summits across the Andes and their 
air temperatures. (a) Location of the 49 
summits in 13 sites across the tropical Andes 
(Supporting Information: Methods), picture 
of Pichincha, Ecuador (top) in the northern 
Andes and picture of Parque Nacional 
Sajama, Bolivia (bottom) in the central Andes 
(b) Maximum temperature of the warmest 
month, annual mean temperature and 
minimum temperature of the coldest month 
of the 49 summits across latitude (distance 
from equator, absolute values of latitude) 
and elevation (m a.s.l.). Temperatures were 
extracted from the CHELSA dataset (Karger 
et al., 2017) for each location and then a 
smooth was applied
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traits have been identified as key traits in determining plant dis-
persal distances (Tamme et al., 2014). Based on the morphology 
of their diaspores, we assigned each species a dispersal mode: 
(a) anemochory, (b) ballochory, (c) barochory, (d) endozoochory, 
(e) epizoochory and (f) hydrochory (Table 1). The information 
was gathered from the literature and herbarium specimens 
(Supporting Information: Methods). We identified the dispersal 
mode for 471 species (96.9% of total species). For the remain-
ing species, given that they lack apparent morphological adapta-
tions, or their congeneric species were mostly barochorous, we 
assumed these species were barochorous as well (Supporting 
Information: Methods).

We used four growth form categories: (a) herb, (b) shrub, (c) tree 
and (d) epiphyte, based on the Tropicos database (www.tropi cos.
org). This classification was preferred over a more detailed classifica-
tion of Andean alpine growth forms (e.g. Ramsay & Oxley, 1997) due 
to data availability and because it matches those used by dispersal 
studies (e.g. Thomson et al., 2010).

Given that species could have more than one trait category (trait 
state), we built species versus traits matrix as multi-choice nominal 
variables for each trait (Pavoine, Baguette, & Bonsall, 2010).

2.3 | Climatic data

In the absence of local climatological data for all our 49 summits, 
we extracted data from the CHELSA dataset at 30 arc sec resolu-
tion (period 1979–2013; Karger et al., 2017). Because Andean pre-
cipitation patterns are currently not yet well described, due to its 
high spatio–temporal variability and the low density of rain gauges 
(Manz et al., 2016), underestimations and overestimations in pre-
cipitation values are expected. We checked Pearson's correlations 
between the 19 bioclimatic variables and selected the following less 
correlated combination (Pearson < 0.7, see details in Supporting 
Information: Methods): (a) maximum temperature of the warmest 
month, (b) minimum temperature of the coldest month, (c) total an-
nual precipitation and (d) precipitation of the coldest quarter. We 
chose minimum and maximum temperature over mean annual tem-
perature to capture the thermal extremes for which alpine plants 
need to adapt (Cavieres, Badano, Sierra-Almeida, Gomez-Gonzalez, 
& Molina-Montenegro, 2006; Körner, 2003). These extremes are 
therefore key in structuring high alpine plant communities (Rundell, 
Smith, & Meinzer, 1994). Minimum temperature was highly corre-
lated with both distance from the equator and elevation (Figure 1).

TA B L E  1   Description of the dispersal mode categories used in this study. Dispersal modes were assigned based on the morphological 
adaptations of the diaspore (fruits or seeds). Drawings by Carlos Maldonado

Dispersal mode Dispersal agent Morphological adaptations Example

Anemochory Dispersed by wind Balloon seeds (minute seeds with distinct air spaces, 
typically seed coat with honeycomb pattern)

Baccharis caespitosa

Dust seeds

Plumose/hairy seeds/fruits

Winged seeds/fruits

Ballochory Dispersed ballistically Ballistic dispersal active explosives (active 
movements due to high pressure in living  
cells)

Geranium sessiliflorum

Ballistic dispersal passive explosives (passive 
(hygroscopic) movements of dead tissues)

Barochory Unassisted, gravity Diaspore without morphological adaptation 
(unspecialized seeds)

Arenaria pycnophylla

Windballist (long, stiff fruit stalks swung by wind 
releasing unspecialized seeds through the pores 
of the fruit)

Endozoochory Dispersed by animals 
(diaspore is ingested)

Edible seeds/fruits/appendages

Epizoochory Dispersed by animals 
(diaspore is carried 
accidentally)

Straight stiffed appendages as bristles or awns Tetraglochin cristatum

Hooks

Spiny appendages

Mucilage

Hydrochory Dispersed by water Air bubbles/floatability Azorella multifida

Other Clonal, myrmecochory (dispersed by ants), synzoochory (diaspore is carried by animals intentionally, zoochory (without 
specification of type e.g. endozoochory, ectozoochory, synzoochory)

http://www.tropicos.org
http://www.tropicos.org
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2.4 | Phylogeny

We used a species-level multi-gene phylogeny from the publicly avail-
able database BIEN 2 (http://bien.nceas.ucsb.edu/bien/biend ata/
bien-2/phylo geny/). The BIEN 2 tree covered 79% of species in our 
dataset. For species unplaced in BIEN 2 tree (102 species), we grafted 
each of them by randomly selecting a branch within the clade con-
taining congeneric (or confamiliar when a genus was unplaced) spe-
cies and then randomly binding a focal species on the branch. By 
repeating the procedure 1,000 times and comparing the outputs, we 
confirmed that the random grafting was not influential in the evalu-
ation of phylogenetic community structure and climatic correlations 
(Supporting Information: Methods). We used the R package bien 
(Maitner et al., 2018) to download BIEN 2 tree and ape (Paradis, Claude, 
& Strimmer, 2004) and phytools (Revell, 2012) for editing phylogeny.

2.5 | Statistical analysis

2.5.1 | Characterizing plant dispersal strategies

We analysed the composition of trait states at the species and com-
munity level. First, we estimated the percentage of species out of 
the total species regional pool (n = 486) with each dispersal mode 
and growth form categories. In addition, we classified each species 
based on their current full distribution range (biogeographic groups) 
following Cuesta et al. (2020) in seven categories: (a) paramo en-
demic, (b) puna endemic, (c) tropical Andean alpine (present in both 
the paramo and the puna), (d) Andean alpine (present in both the 
tropical and temperate Andes), (e) tropical montane (present above 
and below the tree line within the tropics), (f) neotropical (present in 
the Andes and the south American lowlands) and (g) cosmopolitan 
(present in the neotropics and beyond). Then, we analysed the trait 
state composition by biogeographic group to identify trait patterns 
across the geographic distribution of the species.

Second, we analysed the community composition of dispersal 
strategies (i.e. combination of growth-form and dispersal mode) by 
estimating for each community the percentage of species with each 
strategy.

2.5.2 | Phylogenetic signal

We tested the phylogenetic signal of each trait state (i.e. closely re-
lated species tend to share more similar trait states than distantly 
related species) using two statistics: Pagel's λ (Pagel, 1999) and 
D-statistic (Fritz & Purvis, 2010). For Pagel's λ, values closer to 1 
indicate stronger phylogenetic signal while values closer to 0 indi-
cate that a trait state has a weak signal and a random phylogenetic 
structure. D-statistic values are interpreted inversely of those of 
Pagel's λ (see details in Supporting Information: Methods). Analyses 
were run in r using the packages geiger (Harmon, Weir, Brock, Glor, & 
Challenger, 2008) and caper (Orme et al., 2018).

2.5.3 | Association between plant community, 
traits, phylogeny and climate

We first conducted piecewise structural equation modelling 
(piecewiseSEM) to test the hypothesized association between the 
dominance of trait states within communities, the climate and the 
community phylogenetic structure. A piecewiseSEM model was 
built for each particular trait state by using the percentage of spe-
cies with that trait state in each community. Because of the rela-
tively small number of samples (number of communities = 49), we 
selected two climatic variables (minimum temperature and total an-
nual precipitation) to minimize the number of explanatory variables. 
These variables were chosen because of their importance as limiting 
physiological factors for alpine plant species (Cavieres et al., 2006; 
Körner, 2003) and their values varied the most across our sites. 
As a measure of community phylogenetic structure, we calculated 
phylogenetic species variability (PSV) for each community, which 
represents the degree to which species are phylogenetically related 
(Helmus, Bland, Williams, & Ives, 2007). PSV varies from 0 (minimum 
variability, high species relatedness) to 1 (maximum variability, low 
species relatedness). We also accounted for number of species to 
control the effect of species richness on the functional structures. 
In the piecewiseSEM analysis, we incorporated three linear regres-
sion models: the first and second models explain species richness 
and PSV by the two climatic variables, respectively; a third model 
explains the dominance of functional trait by species richness, PSV 
and the climatic variables. In the regression, we also accounted for 
spatial structure of the sampling communities as a site-dependent 
random effect by dividing 49 communities into four site groups 
based on geographical position (i.e. north/south of the northern and 
central Andes). The goodness-of-fit of the piecewiseSEM model was 
evaluated by Fisher's C statistic (Shipley, 2000). We used the r pack-
age piecewisesem (Lefcheck, 2016) for conducting the pieceSEM anal-
ysis, nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Development Core 
Team, 2019) for fitting linear regression model with a random effect 
and picante (Kembel et al., 2010) for calculating PSV.

Secondly, we applied the multivariate version of the fourth- 
corner analysis developed by Pavoine, Vela, Gachet, de Bélair, and 
Bonsall (2011) to test the significance of (a) trait–climate relationship 
across communities, (b) phylogeny–climate relationship across com-
munities, (c) trait–geographical space relationship across communi-
ties (traits are structured spatially) and (d) phylogeny–geographical 
space relationship across communities (phylogenies are structured 
spatially). We used four different matrices: summit x climate (C: cli-
matic conditions in each summit), summit × summit (S: spatial dis-
tance between summits), species × traits (T: traits of all species), 
species × species (P: phylogenetic distances between all species) 
that are linked by a species × summit matrix (L: presence/absence 
of species in each summit). The fourth-corner analyses test the sig-
nificance of the connection between C × S and T × P matrices by 
comparing it against null models (species across the tips of the phy-
logenetic tree were permuted). After testing the significance of the 
connections between matrices, the RLQ ordination can relate them 

http://bien.nceas.ucsb.edu/bien/biendata/bien-2/phylogeny/
http://bien.nceas.ucsb.edu/bien/biendata/bien-2/phylogeny/
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graphically to observe the relationships (see details in Supporting 
Information: Methods). Analysis were run in R using the codes pro-
vided by Pavoine et al. (2011).

Lastly, as a way to infer whether trait states are constrained by 
climatic conditions we analysed if species with different dispersal 
mode/growth form had, in average, different thermal responses. We 
obtained the thermal optimum, minimum and maximum for each 
species from Cuesta et al. (2020). These values were built using 
monthly temperatures extracted from all known locations of the 
species (whole distribution range). Then we tested for differences 
in thermal optimum, minimum and maximum between species with 
different trait states using the Games-Howell post-hoc test that ac-
counts for differences in sampling size.

3  | RESULTS

3.1 | Plant dispersal strategies and trait 
phylogenetic signal

The most common dispersal mode among our 486 species and 
within communities was anemochory (209 species and a median 
of 45.8% species within communities), followed by barochory 
(unspecialized seeds that disperse by gravity, 164 species and a 
median of 27.7% of species within communities; Figures S3a and 
S4a). The dominance of dispersal modes varied between commu-
nities (Figure S4b). Most of the species were herbaceous and this 
growth form was also dominant within communities (Figures S3b 
and S4a).

The most common dispersal strategy (combination of trait states) 
within communities was anemochory-herb, used by a median of 
36% species (Figure 2) and barochorous herbaceous species repre-
sented a median of 26.3% within communities. Nearly 50% of the 

anemochorous species and 30% of herbaceous species belonged to 
Compositae (Figure S5).

When analysing dispersal mode by biogeographic group we 
found that the tropical montane biogeographic group had the high-
est proportion of endozoochory, the puna endemic group had the 
highest proportion of anemochory and the Andean alpine group had 
the highest proportion of barochory (Figure S6). In all biogeographic 
groups, the dominant growth form category was herbaceous. All 
trait states showed a phylogenetic signal (Table 2).

3.2 | Association between plant community, traits, 
phylogeny and climate

3.2.1 | Piecewise structural equation modelling

First, the piecewise structural equation modelling analysis showed 
that colder summits were associated with higher PSV (low spe-
cies relatedness) than summits with milder climatic conditions 
(Figure 3). Second, minimum air temperature and annual precipita-
tion had a stronger correlation with the dominance of trait states 
within plant communities than phylogenetic relatedness (Figure 3). 
The dominance of endozoochory, hydrochory, barochory, and the 
growth forms herb, shrub and tree was correlated with the envi-
ronment. Only the dominance of epizoochory and barochory was 
correlated with PSV. Community percentages of anemochorous 
species (Figure 3) and epiphytes (results not shown) did not have 
any significant correlation either with climate or with PSV.

Higher percentage of endozoochorous species was found in 
warmer summits, while higher percentage of barochorous and 
hydrochorous species was associated with colder conditions. 
The model for hydrochory dominance had a strong spatial struc-
ture (marginal R2 is very low, indicating most of its variance was 

F I G U R E  2   Community plant dispersal 
strategies based on the combination 
of dispersal mode and growth form 
categories. The graph shows the 
percentage of species within the 49 
communities that have the dispersal 
strategy
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explained by spatial structure). Barochory was also higher in com-
munities with lower PSV (high species relatedness) while higher 
epizoochory was recorded in communities with higher PSV (low 
species relatedness). Higher anemochory was found in species- 
poor communities which in turn was influenced by lower minimum 
air temperatures.

Lastly, community percentages of different growth form states 
were only associated with climatic conditions and not with PSV. 
While communities with higher percentage of shrub and tree species 
were associated with higher minimum air temperatures, communi-
ties with higher number of herbaceous species were associated with 
colder summits, as expected.

TA B L E  2   Phylogenetic signal analysis for each trait state of dispersal mode and growth form using Pagel's λ and the D-statistic (see 
Section 2). BM = Brownian motion model, prob. = probability, prob. dif. = probability of differ from

Trait state

Pagel's λ D-statistic Phylogenetic pattern

Estimated 
λ

Prob. dif. 
random 
structure

Prob. dif. BM 
phylo structure

Estimated 
D

Prob. random 
structure

Prob. BM 
phylo 
structure

Interpretation 
lamda (λ)

Interpretation 
D

Dispersal mode

Ballochory 1 <0.001 1 −0.346 0 0.952 Clumped BM Extremely 
clumpled

Endozoochory 0.999 <0.001 1 0.041 0 0.393 Clumped BM Clumped BM

Anemochory 0.979 <0.001 1 0.124 0 0.070 Clumped BM Clumped

Barochory 0.988 <0.001 1 0.212 0 0.011 Clumped BM Clumped

Hydrochory 0.884 <0.001 1 0.353 0 0.016 Clumped BM Clumped

Epizoochory 0.880 <0.001 1 0.413 0 0 Clumped BM Clumped

Growth form

Tree 0.994 <0.001 1 0.229 0 0.162 Clumped BM Clumped BM

Herb 0.967 <0.001 1 0.301 0 0 Clumped BM Clumped

Shrub 0.957 <0.001 1 0.322 0 0 Clumped BM Clumped

Epiphyte 0.880 <0.001 1 0.598 0 0.010 Clumped BM Clumped

F I G U R E  3   Path diagrams explaining 
community trait percentages in relation 
to the following fixed variables: minimum 
temperature of the coldest month 
(minT), total annual precipitation (pp) 
and community phylogenetic structure 
(phylogenetic species variability = PSV) 
for dispersal mode and growth form 
categories. A site-dependent random 
variable was incorporated to account 
for potential spatial autocorrelation 
(see Section 2). Only diagrams with 
significant correlations between FS 
and environmental variables or PSV are 
shown. FS is the percentage of each 
functional state in the community. R2 in 
brackets are the marginal R2 (i.e. ration of 
variance explained by fixed variables). SR, 
sp richness.

minT

pp

SR

PSV

FS

Anemochory

R2

0.54

0.55

−0.39 −0.46

minT

pp

SR

PSV

FS

Ballochory

R2=0.21 (0.03)

0.54

0.55

−0.39

minT

pp

SR

PSV

FS

Barochory

R2

0.54

−0.55

0.55

−0.39 0.38

−0.47
Negative relationship
Positive relationship

minT

pp

SR

PSV

FS

Endozoochory

R 2

0.54

0.82

0.55

−0.39

minT

pp

SR

PSV

FS

Epizoochory

R2

0.54

0.55

−0.39

0.64

minT

pp

SR

PSV

FS

Hydrocory

R2

0.54

−0.87

0.55

−0.39

minT

pp

SR

PSV

FS

Herb

R = 0.60 (0.41)2

0.54

−0.91

0.50

0.55

−0.39

minT

pp

SR

PSV

FS

Shrub

R 2

0.54

0.57

0.55

−0.39

minT

pp

SR

PSV

FS

Tree

R2

0.54

0.51

−0.40

0.55

−0.39

= 0.39 (0.35) = 0.35 (0.26)

= 0.93 (0.18)= 0.50 (0.41) = 0.62 (0.37)

= 0.28 (0.28)= 0.27 (0.27)
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3.2.2 | Fourth-corner tests and RLQ  
ordination analysis

The fourth-corner tests showed a significant association be-
tween our two dispersal traits (dispersal mode and growth form) 

and the climate (p = 0.001 for both), and between traits and space 
(p = 0.001 for both traits). Phylogenies were significantly associated 
with the climate (p = 0.03), but no association was found with space 
(p = 0.53).

The first axis of the RLQ ordination analysis explained 73.3% 
of the variance and represents a gradient dominated mainly by 
temperature and to a lower extent by precipitation (Figure 4a). The 
second axis explained 8.9% and was mostly driven by precipitation 
where the presence of hydrochorous species was higher in wet-
ter summits (Figure S7). The first axis of the trait ordination plot 
showed that the presence of species with unspecialized seeds (ba-
rochory) and mostly herbaceous growth form were associated with 
colder summits (Figure 4b). Thesme trait states are characteristic of 
Brassicaceae, Malvaceae, Poaceae and Caryophyllales (Figure 4c) 
which are common elements at the colder summits. In contrast, 
the presence of endozoochorous species and tree and shrub spe-
cies was associated with warmer summits. These trait states are 
common among the shrub families Ericaceae and Melastomataceae 
(Figure 4c).

Ballochory, anemochory and hydrochory were located in the 
middle of the first axis, indicating no preference for a particular part 
of the temperature gradient. For example, in the case of Compositae 
where most species are anemochorous, herbaceous species were 

F I G U R E  4   RLQ ordination results using the first axis.  
(a) Pearson correlations between the climatic variables (total annual 
precipitation = pp, precipitation of the coldest quarter = pp_coldest, 
maximum temperature of the warmest month = max_T, minimum 
temperature of the coldest month = min_T) and the RLQ coordinates 
of the summits on the first axis. (b) Trait states are located at the 
average coordinates of the species that possess them. The length 
of the segment represents the standard deviation of the scores. 
(c) Phylogeny and coordinates of the species. Higher minimum and 
maximum temperatures (left side of [a]) were associated with trait 
states in the left side of (b) and with taxa in grey bars in the left side 
of (c). Lower minimum and maximum temperatures (right side of [a]) 
were associated with traits and taxa in black bars on the right side of 
the figures in (b) and (c) respectively

Poaceae

Brassicaceae/Malvaceae

Ericaceae

Caryophyllales

Melastomataceae

Senecioneae

Astereae

Correlation with the first axis

Species coordinates

Coordinates on the first axis
1 2–1–2

(a)

(b)

(c)

Compositae

Bomarea

0

F I G U R E  5   Comparison of thermal optimum, minimum and 
maximum temperature between species with different trait states. 
Different letters represent a significant difference between 
biogeographical species groups (p < 0.05) based on Games–Howell 
test
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associated with colder summits while shrub species (mainly from the 
subfamilies Senecioneae and Astereae) were associated with milder 
climatic conditions (Figure 4c).

3.2.3 | Dispersal-related traits versus species  
thermal responses

Endozoochorous species had statistically significant higher thermal 
optima and minima than species with other dispersal modes, except 
for ballochory, but only differed from barochorous and anemochorous 
species in terms of thermal maxima (Figure 5). We found that herbs had 
the lowest thermal responses, followed by shrubs and trees (although 
the difference between shrubs and trees was not significant for mini-
mum temperature). Epiphytes had similar thermal responses as trees 
(Figure 5).

4  | DISCUSSION

4.1 | Plant dispersal strategies in the high tropical 
Andes

The predominant dispersal strategy in plant communities 
across high Andean summits was the combination of trait states 
anemochory-herb, closely followed by the barochory-herb com-
bination (Figure 2). Different dispersal strategies have an impact 
on dispersal distances (Tamme et al., 2014; Thomson et al., 2010). 
For example, anemochorous shrub species (e.g. Baccharis obtusi-
folia, Valeriana microphylla) are expected to have longer dispersal 
distances than anemochorous herbaceous species (e.g. Erigeron 
rosulatus, Pycnophyllum molle) due to the higher seed release 
height of shrubs in comparison with that of herbaceous species. A 
better estimation of dispersal capacity could be obtained if seed 
release height is used (Tamme et al., 2014; Thomson et al., 2010), 
therefore further studies should collect this information for tropi-
cal alpine species.

Dispersal capacity of anemochorous species also depends on 
the trade-offs between the size of the flying apparatus (append-
ages) and seed size (Halloy, 1989). Further studies are needed to 
better understand these trade-offs along elevation gradients be-
cause atmospheric density decreases with increasing elevation, 
making air seed lift more difficult (Halloy, 1989; Körner, 2003).

In contrast to the dominance of anemochory in the high Andes, 
European alpine summits and Asian alpine regions are dominated 
by species with unspecialized seeds (Bu et al., 2008; Di Musciano 
et al., 2018; Matteodo, Wipf, Stöckli, Rixen, & Vittoz, 2013). This 
difference might be explained partially by the higher number of 
Compositae species in South America than in Europe (Panero & 
Crozier, 2016) that are predominantly dispersed by wind (Figure S5). 
Below we discuss the association of dispersal strategies with both 
climate and evolutionary history in the Andes, to better understand 
these strategies.

4.2 | Climate is strongly associated with plant 
dispersal strategies in mountain summits

Dispersal traits were strongly associated with climatic condi-
tions across mountain summits in the tropical Andes, supporting 
our first hypothesis (H1). First, when analysed together, dispersal 
mode and growth form categories were arranged along a tempera-
ture gradient. Second, when analysed separately, most trait states 
showed a stronger correlation with climate than with phylogenetic 
relatedness.

Along the alpine temperature gradient (Figure 4a,b), the prev-
alence of endozoochorous shrub species, mostly belonging to the 
Ericaceae family (Figure S5), decreased from summits with milder 
temperatures to colder summits (i.e. from lower latitudes/elevations 
to higher latitudes/elevations). This is in agreement with what was 
found along a latitudinal gradient in Australia (10°N–45°S; Chen, 
Cornwell, Zhang, & Moles, 2017) where higher temperatures closer 
to the equator were a strong predictor of endozoochory. A positive 
correlation between percentage of endozoochorous species and 
temperature was also found for the montane forests of the north-
ern Andes (Buitrón-Jurado & Ramírez, 2014) but no relationship with 
temperature has been found when studying montane and lowland 
forest together (Correa, Álvarez, & Stevenson, 2015). These con-
trasting results could be due to different trait–environment relation-
ships in lowland and montane forests, but this has yet to be tested. 
A potential explanation for the limited presence of endozoochorous 
shrub species in the coldest environments is the high costs involved 
in producing suitable pulp for dispersers (Bonte et al., 2012; Buitrón-
Jurado & Ramírez, 2014).

At the coldest summits, the presence of herbaceous baro-
chorous species was higher. While seeds are most likely to remain 
closer to the parents and avoid the risks of arriving to unsuit-
able habitats, this strategy increases the risk of kin competition 
(Matthysen, 2012; Starrfelt & Kokko, 2012). On the other hand, in-
terspecific competition could be lower in highly stressful environ-
ments, such as colder summits, where facilitation mechanisms may 
prevail (Callaway et al., 2002). In fact, several of our barochorous 
species (e.g. Gentiana sedifolia) seem to benefit from nurse species 
such as Azorella aretioides or Arenaria musciformis that promote 
higher moisture and soil organic matter in their neighbourhood 
(Anthelme, Buendia, Mazoyer, & Dangles, 2012; Hupp, Llambí, 
Ramírez, & Callaway, 2017). This facilitation could partially explain 
the success of the barochorous herbaceous strategy in cold condi-
tions, however, more research is needed to understand the impor-
tance of kin competition from species with this strategy.

Anemochorous species showed high success across the tem-
perature gradient. One reason for this is that anemochorous herba-
ceous species are associated with a ruderal life strategy (Grime, 1977) 
that makes them good colonizers (Sarmiento, Llambi, Escalona, & 
Marquez, 2003). These species do not only thrive in soils with low 
fertility (Spasojevic, Damschen, & Harrison, 2014) and areas with 
open canopy (Ozinga, Bekker, Schaminee, & Van Groenendael, 2004), 
but also in well-established soils (Matteodo et al., 2013). In the high 
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tropical Andes, anemochory prevailed in species-poor communities 
(Figure 3), which could be linked to incipient soil development on 
steep slopes (Cuesta et al., 2019). Thus, soil development and type 
may better explain the dominance of anemochorous species rather 
than temperature.

The dominance of most trait states was associated more to cli-
matic conditions than to phylogenetic relatedness. Three growth 
categories out of four were associated with climate and not with 
phylogenetic relatedness, while three of six dispersal mode catego-
ries were associated to climate and only two with phylogenetic relat-
edness (Figure 3). Also, communities located in the coldest summits 
were formed by less phylogenetically related species than sub-alpine 
communities or those located closer to the equator. All this suggests 
that environmental filtering potentially becomes more prevalent as 
minimum temperatures become more limiting, reducing, for exam-
ple, the presence of endozoochorous shrubby species in the coldest 
summits.

Because the limited presence of particular dispersal strategies 
could result not only from environmental constraints but other fac-
tors (Kraft et al., 2015), we also analysed the thermal responses of 
species with different trait states. We used the entire distribution 
range of each species to estimate the thermal responses instead of 
only the community data in the 49 studied summits. We found that, 
indeed, endozoochorous shrub species had significantly higher ther-
mal optima, minima and maxima than barochorous, anemochorous 
and epizoochorous species that are herbaceous. This potentially 
indicates that endozoochorous shrub species were limited by the 
environment. However, to properly test this, it might be necessary 
to carry out transplanting experiments (Kraft et al., 2015). Although 
observational data are not perfect, they can provide useful infor-
mation on environmental filtering (Cadotte & Tucker, 2017) and our 
results suggest that climatic constraints had a predominant role in 
shaping dispersal strategies in the high Andes.

4.3 | The role of evolutionary history

Although dispersal strategies of high Andean flora were strongly 
associated with climatic conditions, they were also associated with 
its evolutionary history, giving partial support to our H2. Similar 
trait states were most likely to be found among closely related 
species than among distantly related species (Table 2), indicating 
that trait states, in many cases, were inherited from ancestors 
(H2). However, we also found that phylogenies were associated 
with climate (Figures 3 and 4) but not with space, indicating that 
certain phylogenetic groups have specific preferences for specific 
climates irrespectively of geographic location. One example of 
the combined effect of phylogeny and climate in determining dis-
persal strategies is the genus Espeletia, endemic to the northern 
Andes. The absence of pappi in Espeletia's seeds, inherited from 
their ancestor, may have contributed to their restricted distribu-
tion in the coldest parts of the northern Andes and the high end-
emism within the group (Pouchon et al., 2018). More broadly, the 

Compositae family underwent a major radiation in the Andes at 
around 30 Ma (Panero & Crozier, 2016), resulting in the presence 
of several genera across the tropical Andes. The rapid radiation 
has been hypothesized to be related not only with the dispersal 
success due to the pappus but with whole genome duplication, a 
phytomelanized fruit that seems to protect seeds from herbivory 
(Panero & Crozier, 2016) and a ruderal strategy that allowed them 
to colonize newly uplifted regions (Halloy, 1983). These suc-
cessful traits in Compositae, may help explain the dominance of 
anemochory across our tropical alpine summits irrespectively of 
temperature.

4.4 | Implications for climate change scenarios and 
future steps

Given that plant dispersal strategies of the high Andean flora 
were associated with a temperature gradient, warming scenarios 
could lead to a change in these at the community level. A recent 
study in Andean sites that have been gradually deglaciated since 
the 1970s, found that anemochory dominated the newly estab-
lished plant communities (>90%; Zimmer et al., 2018). But, over 
time, anemochorous species slowly decreased in number at the 
oldest sites in the chronosequence, while zoochory increased from 
0% to 6%. The endozoochorous species in our study have tropi-
cal montane, neotropical and cosmopolitan distributions and have 
higher thermal optima than species with other dispersal modes 
(Figure S6; Figure 5). These characteristics could help endozoo-
chorous species to eventually outcompete cold-adapted species 
such as the barochorous herbaceous species under warming sce-
narios. Cold-adapted species also have narrower thermal niches 
(Cuesta et al., 2020) and are typical of biomes projected to suffer 
habitat reduction due to climate change (Tovar, Arnillas, Cuesta, & 
Buytaert, 2013). A reduction in species with unspecialized seeds 
has been already observed in European mountain summits during 
the last century due to warming (Matteodo et al., 2013), highlight-
ing the potential risk to the Andean barochorous species due to 
climate change.

In order to complement our findings about dispersal and the 
risk of climate change, future studies should focus on seedling 
establishment under climate change scenarios. These should in-
clude both observational and experimental approaches, specially 
to determine the extent to which safe site availability controls 
vegetation dynamics (e.g. Llambí, Puentes Aguilar, & García-
Núñez, 2013). Also, more studies are required to explore clonality 
of tropical alpine species, which is another very common way of 
reproduction in European alpine species (Körner, 2003), but very 
little information exists about clonality for the tropical Andean 
species.
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