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Abstract:

Changes in land use and land cover are major drivers of hydrological alteration in the tropical Andes. However, quantifying their
impacts is fraught with difficulties because of the extreme diversity in meteorological boundary conditions, which contrasts
strongly with the lack of knowledge about local hydrological processes. Although local studies have reduced data scarcity in
certain regions, the complexity of the tropical Andes poses a big challenge to regional hydrological prediction. This study
analyses data generated from a participatory monitoring network of 25 headwater catchments covering three of the major Andean
biomes (páramo, jalca and puna) and links their hydrological responses to main types of human interventions (cultivation,
afforestation and grazing). A paired catchment setup was implemented to evaluate the impacts of change using a ‘trading space-
for-time’ approach. Catchments were selected based on regional representativeness and contrasting land use types. Precipitation
and discharge have been monitored and analysed at high temporal resolution for a time period between 1 and 5 years. The
observed catchment responses clearly reflect the extraordinarily wide spectrum of hydrological processes of the tropical Andes.
They range from perennially humid páramos in Ecuador and northern Peru with extremely large specific discharge and
baseflows, to highly seasonal, flashy catchments in the drier punas of southern Peru and Bolivia. The impacts of land use are
similarly diverse and their magnitudes are a function of catchment properties, original and replacement vegetation and
management type. Cultivation and afforestation consistently affect the entire range of discharges, particularly low flows. The
impacts of grazing are more variable but have the largest effect on the catchment hydrological regulation. Overall, anthropogenic
interventions result in increased streamflow variability and significant reductions in catchment regulation capacity and water
yield, irrespective of the hydrological properties of the original biome. Copyright © 2016 The Authors. Hydrological Processes.
Published by John Wiley & Sons Ltd.
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INTRODUCTION

Andean ecosystem degradation and water resources

The tropical Andes delivers a large portfolio of
ecosystem services but remarkably an abundant and
sustained supply of clean fresh water (Buytaert et al.,
2006a; Roa-García et al., 2011). Groundwater in these
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regions is difficult to extract (Buytaert et al., 2007), which
results in a predominant use of surface water sources that
are particularly vulnerable to environmental changes
(Bradley et al., 2006), hydrological extremes (Bradshaw
et al., 2007), increasing water demand (Buytaert and De
Bièvre, 2012) and a very dynamic land use as a result of
rural development (Buytaert et al., 2006a).
Anthropogenic disturbance in the tropical Andes

started as early as 7000years ago, but it has intensified
after the colonial period in the 16th century and
particularly extended since the early 20th century
(Bruhns, 1994; White and Maldonado, 1991, as cited by
Molina et al., 2015; Etter and van Wyngaarden, 2000, as
cited by Roa-García et al., 2011; Sarmiento, 2000;
Harden, 2006). Changes in land use are largely driven
by population growth, including livestock grazing in
extensive areas (Molina et al., 2007), cultivation of
mostly cereals and tubers (Sarmiento, 2000) and affores-
tation with exotic species introduced as a way to improve
their economic viability (Farley et al., 2004). An example
of the latter is unsuccessful efforts of local authorities to
replicate a positive experience from Cajamarca, Peru,
where degraded lands were restored mostly using Pinus
patula (approximately 60%), Pinus radiata and Eucalyp-
tus globulus. However, the increase in subsurface flow
associated with forests (Tobón, 2009) contrasts with
negative impacts on local biodiversity (Hofstede et al.,
2002) and total water yield (Buytaert et al., 2007).
The severe ecosystem degradation contrasts strongly

with the lack of knowledge about the strong spatiotem-
poral gradients of local climate and hydrological
processes that govern them (Célleri and Feyen, 2009).
Much of the global surface is ungauged or poorly gauged
(Fekete and Vörösmarty, 2007), but tropical regions in
particular are characterized by data scarcity (Wohl et al.,
2012). This is exacerbated by the tendency of national
hydrometeorological networks to cover inadequately
remote headwater areas (Célleri et al., 2010). As a result,
the hydrological impacts of land use and that of many
other anthropic activities in the region, such as watershed
management, conservation and investment (e.g. Asquith
and Wunder, 2008; Tallis and Polasky, 2009; Garzón,
2010) have not been evaluated properly.
Over the last decades, hydrological research in the

tropical Andes has increased (e.g. as reviewed by Célleri
and Feyen, 2009; Célleri, 2010). However, most studies
have focused on the wet páramo ecosystems (Buytaert
et al., 2006a; Crespo et al., 2010; Molina et al., 2015)
and high Andean forests (Bruijnzeel, 2004; Tobón, 2009;
Crespo et al., 2012), while other biomes such as dry
páramo, jalca and puna are underrepresented. The
extreme variety of meteorological boundary conditions,
vegetation types, soils, geology and topography leads to
similarly diverse and non-stationary hydrological

processes at multiple scales (e.g. Vuille et al., 2000;
Bendix et al., 2006; Mora and Willems, 2012), which
complicates further hydrological predictions in unmon-
itored regions. It is therefore paramount to increase the
number, representativeness and quality of monitoring
sites to cover the broad diversity of Andean ecosystems
(Célleri et al., 2010).

Hydrological processes in Andean catchments

The tropical Andes can be divided broadly in five
major landscape units (Cuesta et al., 2009): páramo, puna,
Andean forests, inter-Andean valleys and mountain
deserts or salt flats. They are distinguished by thermal
limits and latitude (Josse et al., 2009, Figure 1). The
páramo, jalca and puna are mountainous highlands that
span above the forest line (3000 to 3500-m altitude) and
the permanent snow line (4500 to 5000-m altitude)
(Buytaert et al., 2006a; Sánchez-Vega and Dillon, 2006;
Célleri et al., 2010). The páramo biome covers the upper
Andean region of western Venezuela, Colombia, Ecuador
and northern Peru, where the transition to the puna
originates the jalca formations. Humid puna extends from
eastern Peru until the north-eastern Bolivian Cordillera,
whereas dry puna is located from western Peru until the
southwest of Bolivia and northern Argentina and Chile.
The latitudinal variability of physical characteristics,

such as soil conditions, is less influential compared with
the effect of the Pacific Ocean and the Amazon plains that
induce more conspicuous differences in hydrological
responses for respectively the Western and Eastern
Cordilleras (Josse et al., 2009). Additionally, Andean
forests and, occasionally, glaciers are located respectively
below and above gradual limiting lines with the highlands
and are therefore associated with them especially on the
common fringes (Cuesta et al., 2009; Soruco et al., 2015).
No existing scientific studies were found on the

hydrology of punas and jalcas; thus, most of the currently
available hydrological knowledge relates to wet páramos.
These highlands feature typical high tropical mountain
climate patterns (Buytaert et al., 2006a; Viviroli et al.,
2007). Regions located closer to the equator have low
seasonal variability, with solar radiation and mean air
temperature almost constant throughout the year. But
diurnal temperature cycles are highly marked and can
range between 0 and 20 °C (Buytaert et al., 2006a, 2007;
Córdova et al., 2015). Luteyn (1992); Buytaert et al.
(2006a) and Molina et al. (2015) have reported annual
precipitation amounts between 500 and 3000mmyear!1,
with an exceptionally high spatiotemporal variability
(Buytaert et al., 2006b; Célleri et al., 2007). In contrast,
characterizing reference evapotranspiration has been limited
by the scarce availability of meteorological data. Although
some values have been reported (e.g. 646mmyear!1,
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Buytaert et al., 2007; 723mmyear!1, Córdova et al., 2015),
errors are thought to be as high as 30% with limited data
(Córdova et al., 2015).
The hydrological response of reported Andean catch-

ments is strongly related to their soil conditions. Buytaert
et al. (2005) showed that the hydraulic conductivity of wet
páramo soils prevented soil moisture to drop below 60vol
%, reducing the probability of water stress occurrence.
Previously, Buytaert et al. (2004) analysed the recession
curves of a natural catchment finding three main responses
attributed to overland flow, interflow and baseflow on the
basis of their residence time. The study also found that
interflow was less important, and later, Buytaert et al.
(2007) and Crespo et al. (2010) pointed the virtual absence
of infiltration excess overland flow. A particular character-
istic of most of the studied high Andean catchments is the
presence of underlying impermeable bedrock that mini-
mizes deep infiltration and groundwater storage (Buytaert
et al., 2007), but some regions also present deep permeable
soils and sustain important aquifers (Buytaert et al., 2006a;
Favier et al., 2008). Runoff ratios between 0.50 and 0.70
have been reported in natural wet páramos (Buytaert et al.,
2007); while more recently, Mosquera et al. (2015) have
found that water yield increases with the extent of wetlands,
likely because of saturation excess flow occurrence.

Additionally, Buytaert and Beven (2011) also highlight
the importance of threshold-triggered and non-stationary
hydrological processes, such as disconnected water
storages found within the catchment microtopography,
or changing evapotranspiration, infiltration and routing
produced by growing vegetation. Lastly, in areas covered
by fog, horizontal precipitation and cloud water intercep-
tion may account for 10% to 35% of total precipitation,
particularly in forested catchments (Bruijnzeel, 2004;
Tobón, 2009; Pryet et al., 2012). However, no studies
were found relating to the studied biomes.
To address this regional knowledge gap, this paper

presents an analysis of data generated from a network of
paired catchments in the tropical Andes to regionalize
human impacts on their hydrological response and water
yield. This research builds upon several years of extensive
study by the Regional Initiative for Hydrological
Monitoring of Andean Ecosystems (iMHEA, Célleri
et al., 2010). Using 25 catchments distributed from
Ecuador to Bolivia, the main objective of this paper is to
include previously underrepresented ecosystems (jalca
and puna) in a region-wide analysis of the impacts of land
use across tropical Andean biomes. We make use of
hydrological indices to test the generalization of results in
areas generally facing data-scarcity yet intense use. These

Figure 1. (Left) Map of the tropical Andes, major high Andean biomes and location of the iMHEA observatories. (Right) Monthly precipitation and
discharge of reference catchments averaged over their monitored periods
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results may be used to improve water resources
management and the effectiveness of watershed interven-
tions, as well as to support emergent research in the
Andean region.

METHODOLOGY

Regional setting

Emerging from a local awareness about the need for
better information on watershed interventions in the
Andes, a partnership of academic and non-governmental
institutions pioneered in participatory hydrological mon-
itoring (Célleri et al., 2010; Buytaert et al., 2014). The
collaborative nature of iMHEA allows for (i) standardiz-
ing monitoring practices by a unique protocol; (ii)
ensuring quality and support from research groups to
local stakeholders through the entire monitoring process;
(iii) local responsibility for equipment and civil structure
safety and maintenance, data downloading and project co-
funding by development institutions; and (iv) promoting
linkages with hydrometeorological and environmental
authorities, policy makers and society involved in water
governance in the region.
The local partners of iMHEA have been monitoring a

set of 25 catchments distributed along the tropical Andes
(Figure 1, Table I). The catchments, sized between 0.5
and 7.8 km2, are located between 0 and 17 ° South and
cover an elevation range from 2682 to 4840-m altitude.
Sites are rural with no urbanization and not affected by
water abstractions or stream alterations. Most of the
catchments have a natural land cover of tussock and
other grasses, interspersed with wetlands, shrubs and
patches of native forest. Shapes are typically oval
tending to circular or stretched and slopes are steep
and uneven. The main land uses are for conservation,
grazing, afforestation and cultivation, which are those
addressed in this study.

Monitoring setup to assess land use change impacts

Quantifying the impacts of land use and cover change
(LUCC) on the water cycle is complicated by the
difficulty of distinguishing the effects of such changes
from those that are due to natural climatic variability or
other confounding factors (Ashagrie et al., 2006;
Bulygina et al., 2009). Assessing these impacts relies
on analysing signals of change over time or contrasting
differences in hydrological responses between two or
more catchments (McIntyre et al., 2014).
Hydrologically, each method has different disadvan-

tages. In long-term analysis, even though the same
catchment is monitored before and after the change,
natural climatic variability may influence differently
during the two considered periods (Lørup et al., 1998).

This is addressed in the second approach by monitoring
paired catchments under the same climatic conditions and
different watershed interventions. However, this may
complicate the attribution of observed differences to the
uniqueness of catchments, as land use is not the only
factor that affects their hydrological response (Bosch and
Hewlett, 1982; Thomas and Megahan, 1998; Beven,
2000; McIntyre et al., 2014). Nevertheless, on balance,
the paired catchment approach delivers more rapid
answers by ‘trading space for time’ (e.g. Buytaert and
Beven, 2009, 2011; Singh et al., 2011; Sivapalan et al.,
2011), allowing for faster input in often urgent policy
decisions. Additionally, the approach can be made more
robust by considering a large number of catchments
covering a wide range of ecosystems, land uses and
physical and climatic characteristics.
In our paired catchments, streamflow has been

measured using a compound sharp-crested weir (a V-
shaped section for low flows and a triangular–rectangular
section for high flows) equipped with pressure transduc-
ers at the outlet of each catchment. Water level recordings
are taken at a regular interval of maximum 15min and
typically 5min. Precipitation has been measured with a
minimum of two tipping-bucket rain gauges at an
installed height of 1.50m (resolutions of 0.254, 0.2 or
0.1mm) distributed in the catchment areas to account for
small scale spatial variability (Buytaert et al., 2006b;
Célleri et al., 2007). Table II shows the different
monitoring periods of the catchments.

Data analysis

A preliminary survey of catchment physical features
was performed before selection and to consider their
influence on the hydrological response. Contour lines at
40-m vertical resolution were available for the character-
ization of elevations and slopes. Because only a limited
number of catchments is equipped with a meteorological
station, reference evapotranspiration was estimated using
Worldclim temperature data (Hijmans et al., 2005) and
the Hargreaves formula (Hargreaves and Samani, 1985;
Allen et al., 1998).
The tipping bucket rainfall data were processed using

a composite cubic spline interpolation on the cumulative
rainfall curve (Sadler and Brusscher, 1989; Ciach, 2003;
Wang et al., 2008; Padrón et al., 2015) and aggregated
at intervals matching discharge time steps (i.e. daily,
monthly and annual scales for hydrological indices and
sub-daily scales for rainfall intensities). A 5-min scale
moving window was used to calculate rainfall intensity
curves for durations between 5min and 2days. The
seasonality index (Walsh and Lawler, 1981) was
calculated and normalized between 0 (non-seasonal)
and 1 (extremely seasonal). Correlations between the
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multiple local rain gauges were used to detect and
correct errors, to fill data gaps and to obtain reliable
averaged values.
The Kindsvater–Shen relation (USDI, 2001) was used

to transform water level to streamflow, complemented
with manual stage-discharge measurements. Flow dura-
tion curves (FDC) and corresponding percentiles were
calculated based on the daily flows using the plotting
position of Gringorten (1963). The slope between 33%

and 66% of the FDC is commonly used as an indicator of
hydrological regulation (Olden and Poff, 2003). A steep
slope is associated with high flashiness response to input
precipitation, whereas a flatter curve represents buffered
behaviour and larger storage capacity (Buytaert et al.,
2007; Yadav et al., 2007). Although flow percentiles are
associated with their probability of occurrence, informa-
tion about when or for how long such flows happen is
absent. Therefore, the average duration of hydrographs

Table I. Major physiographic properties of the studied catchments.

Code Ecosystem Altitude Area Shape Slope Soils Land use Land cover

Units [m] [km2] a b c d [%]
LLO Lloa
LLO_01 Páramo 3825–4700 1.79 SO SU Andosol EG, B TG(90), SH(10)
LLO_02 Páramo 4088–4680 2.21 SO U Andosol, Histosol EG, NF TG(70), NF(10), WL(20)

JTU Jatunhuaycu
JTU_01 Páramo 4075–4225 0.65 O U Andosol IG TG(100)
JTU_02 Páramo 4085–4322 2.42 O U Andosol IG TG(100)
JTU_03 Páramo 4144–4500 2.25 CO U Andosol, Histosol N TG(80), SH(20)
JTU_04* Páramo 3990–4530 16.05 SO U Andosol, Histosol IG, N, R TG(70), SH(10), WL(5), NR(15)

PAU Paute
PAU_01 Páramo 3665–4100 2.63 CO U Andosol N TG(100)
PAU_02 Páramo 2970–3810 1.00 O SU Andosol, Histosol N, EG TG(80), NF(20)
PAU_03 Páramo 3245–3680 0.59 CO SU Andosol, Histosol PF TG(10), PF(90)
PAU_04 Páramo 3560–3721 1.55 CO U Andosol IG, CR TG(70), CP(30)

PIU Piura
PIU_01 Páramo 3112–3900 6.60 CO U Andosol, Histosol N TG(75), NF(15), L(10)
PIU_02 Páramo 3245–3610 0.95 CO SU Andosol, Histosol IG TG(75), NR(15), L(10)
PIU_03 Páramo 3425–3860 1.31 CO SU Andosol, Histosol IG TG(90), L(10)
PIU_04 Forest 2682–3408 2.32 O SU Andosol, Cambisol NF G(20), NF(80)
PIU_07 Dry puna 3110–3660 7.80 O U Andosol IG TG(45), SH(20), CP(35)

CHA Chachapoyas
CHA_01 Jalca 2940–3200 0.95 O U Andosol, Inceptisol PF TG(20), PF(80)
CHA_02 Jalca 3000–3450 1.63 O U Andosol, Inceptisol N TG(90), NF(10)

HUA Huaraz
HUA_01 Humid puna 4280–4840 4.22 CO U Andosol, Histosol N, EG TG(60), NR(25), WL(15)
HUA_02 Humid puna 4235–4725 2.38 O U Andosol, Histosol EG TG(55), NR(30), WL(15)

HMT Huamantanga
HMT_01 Dry puna 4025–4542 2.09 O U Leptosol, Inceptisol IG G(75), NR(15), SH(10)
HMT_02 Dry puna 3988–4532 1.69 O SU Leptosol, Inceptisol IG G(85), NR(10), SH(5)

TAM Tambobamba
TAM_01 Humid puna 3835–4026 0.82 O U Leptosol, Inceptisol IG, PF G(80), PF(20)
TAM_02 Humid puna 3650–4360 1.67 CO SU Leptosol, Inceptisol N, NF G(60), NF(40)

TIQ Tiquipaya
TIQ_01 Humid puna 4140–4353 0.69 O U Leptosol, Inceptisol IG, CR G(70), NR(30)
TIQ_02 Humid puna 4182–4489 1.73 SO U Leptosol, Inceptisol N TG(90), NR(5), WL(5)

Notes
a SO: Stretched oval; O: Oval; CO: Circular to oval.
b U: Uneven; SU: Strongly uneven; S: Steep; VS: Very steep.
c B: Burning; CR: Cultivation; EG: Extensive grazing; IG: Intensive grazing; N: Natural; NF: Native forest; PF: Pines; T: Tourism; R: Restoration.
d TG: Tussock grass; G: Grass; SH: Shrubs; NF: Native forest; WL: Wetland; PF: Pines; L: Lagoon; NR: Nude rock/soil.
*Station JTU_04 is located at the outlet of the catchment that contains JTU_01 to JTU_03 and is not used in a pairwise comparison.
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above or below a threshold helps complement this
information.
In order to assess the impacts of cultivation, affores-

tation and grazing on the hydrological response and water
yield, a set of indices is compared between reference and
altered catchments and contrasted across biomes
(Table III). Precipitation is summarized in the seasonality
index (SINDX), annual ratio of days with zero precipi-
tation (DAYP0) and daily rainfall variability (PVAR). For
discharge, we use the runoff ratio (RR), daily flow
variability (QVAR), slope of the flow duration curve
(R2FDC), the hydrological regulation index (IRH),
average low flow duration below the 25th flow percentile
(DLQ75) and average high flow duration above the 75th
flow percentile (DHQ25). To assess differences in
streamflow flashiness and response to precipitation
events, we also compare high-resolution sections of the
monitored precipitation and discharge time series.
Hydrological indices were calculated using the entire
available dataset for each catchment, while a 30-day scale
time window is used for visualization purposes highlight-
ing representative effects of land use change on
catchment regulation that are consistently observed in
the complete analysis periods.

RESULTS

The natural hydrological regime

Table II and Figures 1 and 2 show results of the
monitoring of precipitation and streamflow for the three
major biomes in the highlands of Ecuador, Peru and
Bolivia: páramo, jalca and puna. The studied catchments
represent an extraordinary wide spectrum of characteris-
tics and clearly reflect the dominant regional regimes of
the tropical Andes.
In northern Ecuador, stations located on the eastern

side of the Andes (JTU) have a stronger influence from
the Amazon regime, resulting in a more pronounced dry
season during the boreal winter (DJF). In contrast, dry
months in the western slopes at similar latitude (LLO)
occur during the summer (JJA). Despite their low
seasonality (SINDX<0.32), DAYP0 was as high as
0.52 in LLO, and daily precipitation was more variable
than in other páramo catchments (PVAR>1.70). How-
ever, daily discharges were considerably more stable
(QVAR<1.44).
The catchments located in the páramo of southern

Ecuador and northern Peru exhibit a perennially wet,
bimodal regime similar to that described by Bendix

Table III. Definition of the hydrological indices analysed in the study.

Abbreviation Reference formula Units Definition

Indices related to meteorological features
ET0 0.0023(Tmean+ 17.8)(Tmax!Tmin )

0.5Ra [mmyear!1] Reference evapotranspiration based on monthly
temperature estimates only.

SINDX (1/Pyear)(Σ|Pmonth–Pyear|/12)(6/11) [!] Seasonality index scaled between 0 (non-seasonal,
all months with equal rainfall) to 1 (extremely
seasonal, all annual rainfall occurring during
one month).

DAYP0 DP<RGres/Dtotal [!] Percentage of days with zero precipitation
(i.e. not registered by the rain gauge resolution)
with respect to the total number of days over the
monitored period.

PVAR σP/Pmean [mmmm!1] Coefficient of variation in daily precipitation over
the monitored period, standard deviation divided
by mean.

Indices related to streamflow features
RR Qyear/Pyear [!] Ratio between average discharge volume and

average rainfall volume over the monitored period.
QVAR σQ/Qmean [mmmm!1] Coefficient of variation in daily flows over the

monitored period, standard deviation divided by
mean.

R2FDC (log10(Q66)–log10(Q33))/(0.66–0.33) [!] Slope in the middle third of the flow duration
curve in logarithmic scale.

IRH Σ(QQ<Q50)/Σ(Q) [!] Volume below the 50th flow percentile (Q50) in
the flow duration curve divided by total volume.

DLQ75 Σ(DQ<Q75)/NQ<Q75 [day] Average duration of flows below the 25th flow
percentile (Q75) over the monitored period.

QHQ25 Σ(DQ>Q25)/NQ>Q25 [day] Average duration of flows above the 75th flow
percentile (Q25) over the monitored period.
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(2000) and Célleri et al. (2007). In the case of the páramo
in Piura, this is characterized by a Pacific climate
influence increased further by Amazonian air masses that
penetrate the Andes through the Huancabamba depression
(Figure 2). The seasonality is low (SINDX<0.30,
DAYP0<0.30), which means that precipitation is well
distributed throughout the year with high-intensity events
occurring approximately every 3months (January, March,
June and October). This results in a low variability of
streamflow (PVAR<1.60, QVAR<1.10) and high
specific discharge.
In contrast, catchments located further south in the

jalca and puna biomes only receive moisture from the
Amazon basin because of the arid climate system of
the Peruvian Pacific coast (Figure 2). These catchments
tend to have monomodal precipitation regimes with a
clear humidity gradient decreasing from east to west.
Seasonality and rainfall intensities are much lower in
the jalca of Chachapoyas (SINDX<0.20, DAYP0<0.32),
which results in small, sustained streamflows with
low variability during the entire year (PVAR<1.61,
QVAR<1.10).
The puna catchments of southern Peru and Bolivia have

the most pronounced seasonal regime (SINDX>0.30,
DAYP0>0.60), with high intensities during the boreal
winter. As shown in Figure 2 for the puna in Tiquipaya,
this produces highly seasonal and variable discharge
volumes falling nearly to zero during the driest months
(PVAR>2.36, QVAR>2.10). The humid puna of Huaraz

in central Peru still shares precipitation characteristics
similar to those of the páramo further north (i.e. large
annual rainfall, DAYP0<0.26, PVAR<1.61), yet sea-
sonality is larger and precipitation during dry months may
be as low as 3mmmonth!1 (Figure 1).
Natural Andean ecosystems are associated with FDC

profiles with a low slope indicating good hydrological
regulation capacity (R2FDC~ 0, IRH>0.50), often
diminished because of LUCC. As can be seen in
Figure 2, the jalca exhibited the most horizontal profile,
followed by the páramo, while the curve in the puna
revealed a larger difference between high and low flows.
Additionally, average RRs of natural catchments are
between 0.37 and 0.72 in the páramo, 0.60 in jalca and
between 0.30 and 0.70 in the puna.

The impacts of land use change

Cultivation. Figure 3 shows that cultivated catchments
respond to rainfall events with higher and more rapid
peak flows, while the recession curves drop faster
sustaining lower baseflows. This indicates a loss of
hydrological regulation capacity, which is also reflected
in a steeper FDC. While high flows remain very similar
among pairs, mean daily flows are approximately half
those of natural catchments, and low flows are lower with
an average ratio of five. QVAR is high in both the natural
and cultivated puna yet larger when the páramo is
intervened. Additionally, DLQ75 and DHQ25 are about

Figure 2. Hydrological response of different Andean biomes in a year. The left vertical axis corresponds to precipitation and the right vertical axis to
streamflow. The flow duration curves and annual water yield are aggregated over the complete catchment monitored periods. Notice that the time series

show different years
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60% lower in the cultivated catchments of both biomes,
which may indicate a flashier streamflow regime under
cultivation.
The impacts of agriculture on water yield are more

difficult to identify, with only a slightly lower discharge
in both biomes. After correction for rainfall volume
differences, water yield in the natural and cultivated
páramo differ in 142mmyear!1 (RR: 0.75 vs 0.66) but
only 8mmyear!1 in puna (RR: 0.33 vs 0.28). However,

on average, such differences still lie within the broad
range of natural catchments.

Afforestation. Figure 4 shows that the flow regime
drastically changes under afforestation, reducing the
entire flow distribution but increasing the steepness of
the FDC. High and mean daily flows in afforested
catchments are approximately four times lower, whilst
low flows are even seven times lower (up to 10 times in

Figure 3. Impact of cultivation on the hydrological response of (a) páramo and (b) puna. The black lines represent the reference natural catchments and
the grey lines their pairs. The high-resolution 30-day time series sections present comparable precipitation events and their correspondent streamflow

responses. The flow duration curves and annual water yield are aggregated over the complete catchment monitored periods

Figure 4. Impact of pine afforestation on the hydrological response of (a) páramo, (b) jalca and (c) puna. The black lines represent the reference natural
catchments and the grey lines their pairs. The high-resolution 30-day time series sections present comparable precipitation events and their correspondent

streamflow responses. The flow duration curves and annual water yield are aggregated over the complete catchment monitored periods

OCHOA-TOCACHI ET AL.: LAND USE IMPACTS ON TROPICAL ANDEAN HYDROLOGY

Copyright © 2016 The Authors. Hydrological Processes. Published by John Wiley & Sons Ltd. Hydrol. Process. (2016)

Veronica Galmez




the jalca). This results consistently in a much lower water
yield under afforestation compared with their
neighbouring natural catchments. Corrected discharges
differ by 250mmyear!1 (RR: 0.43 vs 0.20) in the
páramo, 386mmyear!1 (RR: 0.60 vs 0.19) in the jalca
and up to 536mmyear!1 (RR: 0.58 vs 0.20) in the puna.
Additionally, although the occurrence of sustained

precipitation events increases streamflow in natural
watersheds, this response is virtually absent in the
afforested catchments. At the same time, we also find
that QVAR is 50% higher under afforestation than under
natural grasslands, reflecting a relatively higher variability
in daily flows overall. Furthermore, whereas DLQ75 is
slightly lower in the afforested catchments, suggesting an
improvement in hydrological regulation, DHQ25 is twice
as high in the afforested páramo and jalca but only half in
the afforested puna.

Grazing. The impacts of grazing are more difficult to
identify on aggregated statistics. Under low-intensity
grazing in two páramo catchments with deep soils located
in northwestern Ecuador (LLO_01 and LLO_02,
Figure 5), the water yield is 115mmyear!1 (RR: 0.10)
and 144mmyear!1 (RR: 0.13), respectively, and both
present a very horizontal FDC profile (R2FDC>!0.60).
Similarly, the corrected difference in water yield between
a pristine páramo watershed (PIU_01) and its

neighbouring grazed pair (PIU_02) is only 28mmyear!1

(RR: 0.66 vs 0.65), and their overall flow distributions
seem unaffected (R2FDC: !1.30 on average, Figure 5).
Therefore, the major and more severe impacts of grazing
are observed on the hydrological regulation of catchments
with high-density livestock, which produce much faster
and higher peaks as well as more rapid flow recessions
than the highly buffered natural páramo.
Similar effects are observed between a natural puna

(HUA_01) and its pair under low-density grazing
(HUA_02) (Figure 6). The FDC profiles are similar, with
only a slightly steeper FDC slope (R2FDC: !2.22) under
low-density livestock grazing compared with the natural
catchment (R2FDC: !2.06). Flow magnitudes are
different by 28% on average, which is mainly expressed
in the low flows (up to 50%). Also here, the flashier
response of the grazed catchment is only recognizable in
the high-resolution time series. The corrected discharge is
slightly more affected, differing in 178mmyear!1 (RR:
0.70 vs 0.56).
However, the vast majority of puna highlands are

overgrazed and exhibit visibly flashy hydrological
responses similar to those of PIU_07 and HMT
catchments (Figure 6). During rainfall events, flows are
considerably unstable, with frequent peaks above
100 l s!1km!2, quickly dropping to low flows below
1 l s!1 km!2 in a time span of a few days. This flow

Figure 5. Impact of livestock grazing on the hydrological response of páramo under (a) low and (b) high animal density and (c) with respect to a
neighbouring catchment with forest cover. The black lines represent the reference natural catchments and the grey lines their pairs. The high-resolution
30-day time series sections present comparable precipitation events and their correspondent streamflow responses. The flow duration curves and annual

water yield are aggregated over the complete catchment monitored periods
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magnitude variation is even more critical considering the
high seasonality of precipitation in the puna highlands.
For example, in HMT_01, the ratio Qmax/Qmin reached
up to 46 250 during the monitored period, and its FDC is
very steep (R2FDC: !3.33). Although the flow regime of
HMT_02 appears stable during the time series section
shown, field observations suggest that water from rainfall
events does not easily infiltrate in the soil and is
evaporated from the surface before reaching the catch-
ment stream. The water yield in these overgrazed punas is
considerably low, at 173mmyear!1 (RR= 0.27) in
PIU_07, 168mmyear!1 (RR=0.26) in HMT_01 and
138mmyear!1 (RR=0.23) in HMT_02.
Lastly, contrasting the hydrological response of

overgrazed grasslands (JTU_02 and PIU_07) with nearby
conserved catchments under partial forest cover (JTU_03
and PIU_04) shows average and high flow magnitudes up
to six times lower and low flows up to 14 times lower
(Figures 5 and 6). Although QVAR and DLQ75 are larger
in the affected grasslands than in their counterparts,
R2FDC is very low in all cases (>!1.12) and DHQ25 is
shorter. An extraordinary regulation capacity of the
natural catchments is observed at the high-resolution
time series, reducing and delaying peak flows when
rainfall occurs and sustaining large baseflows in the
absence of precipitation. In contrast, the overgrazed
catchments rapidly react to rainfall events pushing flow

to high peaks and plummeting again to almost completely
dry baseflows.

DISCUSSION

The natural hydrological regime

All catchments share the predominance of low
precipitation intensities that is characteristic for high
Andean regions (Buytaert et al., 2006a; Padrón et al.,
2015). Mean intensities for a 1-h interval are between 0.5
to 2mmh!1. This is below the infiltration capacity of the
soils, which typically ranges between 10 and 20mmh!1

with maxima up to 70mmh!1 in páramo (Buytaert et al.,
2005; Crespo et al., 2011; Carlos et al., 2014). The
occurrence of low intensities has been further confirmed
by a recent study using an LPM disdrometer in a páramo
catchment of southwestern Ecuador where 50% of annual
rainfall occurs at intensities lower than 2mmh!1 (Padrón
et al., 2015).
As a result, the natural hydrological regime is generally

a baseflow-dominated response, with the conspicuous
absence of sharp peaks in the extreme high and low ends
of the FDCs (Figure 2). This has also been observed by
Buytaert et al. (2006a) and Crespo et al. (2011) for wet
páramo regions in southern Ecuador. However, when
such peaks are present in the section of high flows, they

Figure 6. Impact of livestock grazing on the hydrological response of puna under (a) low and (b) high animal density and (c) with respect to a
neighbouring forest. The black lines represent the reference natural catchments and the grey lines their pairs. The high-resolution 30-day time series
sections present comparable precipitation events and their correspondent streamflow responses. The flow duration curves and annual water yield are

aggregated over the complete catchment monitored periods
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might represent the occasions when saturated overland
flow occurs (Buytaert et al., 2007). Seasonality is clearly
an important driver of the hydrological regime in puna,
which contrasts strongly with the more perennially wet
páramo regimes that sustain higher flows during the
shorter periods without precipitation.
Although natural RRs range from 0.30 to 0.72, Padrón

et al. (2015) argued that tipping-bucket rain gauges
underestimate real rainfall by about 15% when precipi-
tation occurs as very low-intensity events, which may
result in an overestimation of the RR. Nevertheless, the
overall results contrast with the local mislead idea that
punas are naturally less efficient than páramo catchments
in terms of water yield, while our results show that the
perceived smaller runoff production is mostly a result of
their lower precipitation input and higher seasonality.
Further insights of seasonality effects are indicated by
duration indices in Table II. In natural catchments,
DLQ75 and DHQ25 are the lowest in jalca and largest
in puna, contrasting with the buffered behaviour of
páramo catchments.
From our results, it is clear that, apart from the

precipitation regime, diverse factors, such as vegetation
types, soils, geology and topography, increase the
heterogeneity of catchment hydrological responses. For
instance, the particularly low water yield of JTU and LLO
(RR<0.37) might be related to subsurface and ground-
water preferential flow paths probably enhanced by
important soil infiltration in their deeper soil profiles
(Buytaert et al., 2006a). These results may support
previous investigations of groundwater flow in the wet
páramos of northern Ecuador (Favier et al., 2008),
although this is not common in the other studied
catchments and requires more specific investigation.

The impacts of land use change

The impact of cultivation on the catchments’ hydro-
logical regulation capacity tends to be larger than on
water yield. The increase in the steepness of FDCs in
both cultivated páramo and puna are consistent to the
loss in regulation of around 40% reported by Buytaert
et al. (2007) and Crespo et al. (2010). Buytaert et al.
(2004, 2005, 2007) have attributed this effect to a shift
from base to peak flows because of the increase in
hydraulic conductivity of the soils under cultivation and
especially the introduction of artificial drains and
mechanisms that enhance drainage in cultivated catch-
ments. Additionally, soil exposure to radiation and
drying effects of wind is known to induce hydrophobic-
ity (Buytaert et al., 2002). Other studies on cultivated
plots in Venezuelan dry páramos (Sarmiento, 2000) and
Colombian wet páramos (Díaz and Paz, 2002, as cited by
Célleri, 2010) reported reductions in the water storage

capacity of soils and important evapotranspiration rates
controlling the water balance.
The effects may intensify when cultivated lands are

abandoned after some crop cycles becoming susceptible
to degradation processes. The rainfall-runoff response in
catchments with degraded soils is also often quicker and
higher than in natural ecosystems, although the difference
is highly variable. For example, using simulated rainfall
plots with different vegetation cover in wet páramo,
Molina et al. (2007) reported surface runoff between 4%
and 100%, with an average of 47%, which is much higher
than in arable land or natural ecosystems. There are no
reports of paired catchment experiments in degraded
lands in this region, but long-term discharge records in
other degraded areas give evidence of a baseflow increase
following large-scale rehabilitation (Beck et al., 2013).
Furthermore, field observations report a substantial
increase in sediment production affecting water quality
that is generally rare in natural Andean grasslands
(Crespo et al., 2010).
Planting of exotic tree species for this area such as pine

affects considerably the soil water retention, water yield
and hydrological response. The severe reduction in
discharges after pine afforestation in natural Andean
grasslands is attributed to the higher water evapotranspi-
ration of trees and interception in the canopy. This is
coherent with other studies that report regions under
moderate to high rainfall patterns (see e.g. a thorough
review of comparable studies cited in Farley et al. (2005)
and Buytaert et al. (2007)). The particular magnitude of
these impacts in each biome may depend on the local
precipitation amounts and higher potential evapotranspi-
ration favouring for larger water consumption (Table II).
However, the similar trends in the observed effects across
biomes clearly reflect the expected response of Andean
grasslands under intensive afforestation interventions
(e.g. 1000 stems ha!1, Buytaert et al., 2007).
Similarly, the buffered discharge response of all

afforested catchments shown in Figure 4 is consistent
with the absence of peak flows reported by Crespo et al.
(2010, 2011). Such a difference with respect to more
rapidly responding natural catchments is likely produced
by an enhanced soil infiltration caused by tree roots.
Additionally, according to Crespo et al. (2010), soil water
content is lower in pine plantations near the root zone,
which produces an accelerated organic material decom-
position altering the normal catchment regulation feature.
Furthermore, low flows may reduce in up to 66%
(Buytaert et al., 2007), but the way in which water
moves through the ecosystem remains unchanged (Crespo
et al., 2011). The possible potential for flooding control of
pine plantations is still under debate (Célleri, 2010).
We are not aware of specific studies about the effects of

eucalyptus plantations on Andean hydrology, but similar
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effects can be expected. In a global assessment, Farley
et al. (2005) found that eucalypts caused more severe
impacts than other tree species in afforested grasslands
and especially on low flows. Similarly, Inbar and Llerena
(2000) indicated that a 10-year-old afforested puna in
central Peru generated more surface runoff and sediment
yield than any other vegetated area in their studies.
Additionally, the apparent role in preventing soil erosion
is lower compared with ancient terraces (Inbar and
Llerena, 2004; Harden, 2006).
Although the impacts of afforestation in natural

catchments are mostly negative, the improvement in soil
infiltration could be tailored extensively and leveraged to
recover degraded lands by identifying zones with
potential to control and avoid strong erosive processes.
The general agreement is that dry-season flow in forested
catchments depends on a ‘trade-off’ between soil
infiltration enhanced by forest roots and soil water storage
consumed by vegetation (Beck et al., 2013).
The impacts of grazing depend on the animal density as

much as on the catchment physiographic and soil
characteristics. The flashy response of grazed catchments
observed in the high-resolution time series is mainly
attributed to an aggressive soil compaction as reported by
Díaz and Paz (2002); Quichimbo (2008), and Crespo
et al. (2010), affecting hydrological regulation. As cited
by Célleri (2010), Quichimbo (2008) observed an
increase in soil bulk density from 0.40 to 0.64 g cm!3 in
Ecuadorian wet páramo, while Díaz and Paz (2002) found
increases from 0.20 to 0.41 g cm!3 under low-livestock
density (<0.1 head ha!1) and to 0.86 g cm!3 under high-
livestock density (>0.5 head ha!1) in Colombian wet
páramo. These authors have also reported diminished soil
hydraulic conductivities, for example, changing from 61
and 73mmh!1 to 15 and 18mmh!1 under overgrazing.
The difficulty of identifying changes in water yield and

catchment regulation using aggregated indices and FDCs
has happened in previous studies. Although Crespo et al.
(2010) reported an increase in soil bulk density up to
0.99 g cm!3, water yield was around 15% lower and
evapotranspiration 24% higher in grazed lands than in the
natural wet páramo of southern Ecuador. Based on a
comparison of FDCs, they reported that cattle grazing
with annual burning did not seem to affect the
hydrological response, mainly because of the low animal
density, while water yield was considered to be reduced
slightly. Later, Crespo et al. (2011) recognized that the
effects of grazing compared with natural ecosystems are
unnoticeable in the shape of FDCs.
Lastly, the highly seasonal and small precipitation

volumes in the punas, their thinner soil profiles (Carlos
et al., 2014) and their steeper topography deepen the
impacts of grazing even when animal density is low. This
amplifies the reduction of vegetation cover and the loss of

organic soil, which results in a substantial detriment of
catchments’ hydrological regulation. Livestock grazing
also affects water quality by increasing the suspended
sediments and coliform concentrations (Roa-García and
Brown, 2009). This is particularly relevant when water is
used downstream, for instance, for human consumption
with minimum treatment. Overall, livestock overgrazing,
especially in puna, may be considered as the most
impacting land use in the Andean grasslands.

CONCLUSIONS

Despite the importance of Andean ecosystems as major
water sources, there is still a considerable lack of
knowledge about their hydrology, which is exacerbated
by the high spatial and temporal gradients and variability
in their geographic and hydrometeorological conditions.
The absence of long-term, high-resolution, good-quality
monitoring data can be overcome by information
generated from novel polycentric and participatory
monitoring schemes, such as iMHEA. This paper aimed
at the use of such data to characterize regionally the
natural hydrological regime of Andean catchments and
the impacts of land use on their responses.
The analysis reveals very diverse climatic characteris-

tics generating a wide range of responses within natural
catchments. The wet páramo and jalca of Ecuador and
northern Peru are generally humid, perennially wet or low
seasonal and present a highly buffered hydrological
response. On the other hand, the drier puna highlands
of southern Peru and Bolivia are highly seasonal, with
greater rainfall variability controlling their hydrological
behaviour. However, similar characteristics are associated
with the three biomes under natural conditions: a
baseflow-dominated response and a large water yield.
Correspondingly, the impacts of land use are highly

diverse, and the magnitude of those changes should be
considered together with the original and the replacement
vegetation, soil properties and changes therein, as well as
the governing climate pattern. We find regionally
consistent trends in such impacts, which result most
commonly in an increase of streamflow variability and a
decrease in catchment regulation capacity and water
yield, irrespective of the hydrological properties of the
original biome. On the one hand, cultivation and
afforestation with exotic species clearly affect the entire
range of discharges, and low flows in particular. On the
other hand, the impacts of livestock grazing depend on
the animal density and catchment physiographic and soil
characteristics. Although they may pass unnoticeable in
the flow distribution overall, they have the largest impact
on the catchment hydrological regulation, which is
observable using high-resolution time series.
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Although this paper focused on surfacewater availability,
LUCC also affects other processes, such as nutrient fluxes
or water quality, and interacts with subsurface hydrolog-
ical drivers. The latest efforts of iMHEA aim to address
some of these issues, such as characterizing erosion
controls and sediment transport, monitoring key water
quality components for downstream users and tracing
subsurface and groundwater flow pathways.
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